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Abstract
It has been shown that the central-cell potential of a phosphorus ion embedded in a silicon
nanocrystal effectively mixes the electronic states of X- and �-bands. Quantum confinement
strengthens the �–X mixing which, in turn, straightens the nanocrystal’s band structure, and
substantially intensifies interband radiative recombination.

(Some figures in this article are in colour only in the electronic version)

Incorporation of silicon or silicon-based structures into
optoelectronics has remained laborious up to now because
of the indirect band gap of silicon. To all appearances,
silicon nanocrystals (NCs) are most promising objects for this
purpose. The Heisenberg uncertainty relations and phonon
assistance make possible interband radiative transitions in Si
NCs. Previous calculations [1–4] of phonon-assisted, and no-
phonon radiative recombination rates τ−1

R in Si crystallites
yielded values varying from 105 s−1 to 5 × 102 s−1 for
phonon-assisted, and 1–3 orders of magnitude less for no-
phonon transitions, respectively, as the crystallite radius
increased from 1 to about 2.5 nm. However, such values
are still insufficient for effective photon generation, because
competitive nonradiative processes (e.g. capture on dangling
bonds, or Auger recombination) are considerably faster. They
have rates within the range 102–1011 s−1 depending on the dot
size [5] (pp 223, 226). As a result, interband transitions mainly
occur through the nonradiative channel. Admittedly, Sykora
et al [6] reported radiative decay rates τ−1

R equal to 107 s−1.
However, the NC sizes in their experiments were, presumably,
sufficiently small (less than 2 nm in diameter).

As a means of improving emittance of silicon crystallites,
doping them with phosphorus is proposed. As reported
earlier [7–11], doping with phosphorus can significantly
enhance the photoluminescence (PL) intensity from Si NCs.
This phenomenon can be explained as being related to
the passivation of dangling bonds by phosphorus [7–10],
which decreases the nonradiative recombination rate τ−1

NR , as

well as to factors determining the total amount of light-
emitting Si NCs (e.g. impurity-stimulated nucleation/growth
of NCs) [11]. Another important factor, which requires
special consideration, is the influence of doping directly on
the radiative recombination channel. It is the main purpose of
our paper to make clear the role of phosphorus in the increase
of the radiative recombination rate τ−1

R . We present here our
experimental and theoretical results on the PL enhancement
due to P-doping in silicon NCs embedded in a SiO2 matrix.

In order to study experimentally the effect of phosphorus
on the light-emitting properties of Si quantum dots, both
spectral and temporal characteristics of PL in the range of 600–
900 nm were measured for SiO2 layers with Si NCs embedded.
The ensemble of NCs with a mean diameter of 3.5 nm was
synthesized in thermally grown SiO2 films (800 nm thick) by
Si+ ion implantation (ion dose—7 × 1016 cm−2, ion energy—
100 keV) with subsequent annealing for 2 h at 1000 ◦C in a
N2 atmosphere. Before annealing, some of the samples were
implanted with P+ ions (100 keV) with doses in the range
of 1014–1017 cm−2 (corresponding to the range of phosphorus
peak concentrations of 1019–1022 cm−3). Measurement of the
PL spectra was carried out at room temperature by using the
337 nm line of a pulsed N2 laser (mean power of ∼ 10 mW,
pulse duration tp ∼ 10 ns, pulse repetition rate—25 Hz) for
PL excitation, a grating monochromator (Acton SP-150) and
a photomultiplier tube (Hamamatsu R-928) for PL detection.
The excitation power was chosen to lie in the linear region
of the PL signal power dependency. PL decay curves were
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Figure 1. PL spectra of Si+-implanted SiO2 films synthesized at
1000 ◦C after irradiation with P+ and final annealing at 1000 ◦C.
Numeral markers indicate the ion concentrations in cm−2.

measured at the wavelength of 750 nm (the maximum of the
PL spectrum) by using an SRS Boxcar Averager & Fast Gate
Integrator.

The NC-related PL spectra are shown in figure 1. The
PL intensity monotonically rises with increasing P-dose up to
1016 cm−2 and drops at the higher doses. The PL quenching
can be a consequence of some destructive mechanisms of
phosphorus precipitation, and Auger recombination. At
phosphorus doses close to 1016 cm−2, the PL intensity peak
rises up to 5–6 times compared to the case of undoped NCs,
as seen in figure 2, where the PL intensities and lifetimes
τPL = τNRτR/(τNR + τR) measured at 750 nm are plotted as
functions of the phosphorus ion dose (concentration). It is
worth noting that the PL lifetime τPL changes slowly in the dose
range (from 1015 to 1016 cm−2) where the PL intensity grows
rapidly with phosphorus concentration. A possible explanation
is that the PL decay (typical time-dependence is presented in
the inset to figure 2) is determined by the balance of radiative
and nonradiative processes as a result of passivation of the
interface dangling bonds, whereas the intensity of the PL is
proportional to the rate τ−1

R at the almost constant value of τPL.
Below, we shall theoretically show that doping can

substantially improve the radiative channel efficiency in Si
NCs. In particular, doping increases the radiative decay rate
τ−1

R , which, in turn, increases the quantum yield and the PL
intensity. In what follows, within the framework of envelope
function approximation, we calculate the lifetime of radiative
interband transition in the NC with a phosphorus ion, and
analyse the lifetime dependence on the ion position in the NC.

Earlier, Iory et al [12] calculated the imaginary part ε′′(ω)
of the dielectric function for a P-doped 1.5 nm silicon NC
by first-principles methods. In contrast to this work [12], we
are interested in optical transitions in NCs whose sizes are
greater than 2 nm. Moreover, the use of the imaginary part

Figure 2. Phosphorus concentration (dose) dependencies of PL
intensity and decay time measured at 750 nm. The inset shows
temporal behaviour of the PL signal at P-dose of 1016 cm−2.

ε′′(ω) is more convenient for calculations of absorption spectra
than of emission spectra. We suppose that main contribution
to the emission spectrum of the NC comes from the basic
interband electron transitions between the ground conduction
and valence states. For this reason, we shall compute the
radiative lifetimes for these transitions only.

Coulomb interaction of the excited electron with the
phosphorus ion plays a crucial role in the recombination
process. The Coulomb field consists of two parts: the long-
range hydrogen-like term V ; and the short-range microscopic
term W (the so-called central-cell field [13]).

The hydrogen-like part which, for bulk silicon, is written
as V (r) = −e2/εsr , with εs being the silicon permittivity, is
transformed in the NC into the sum V (r) = Vsp(r)+Vie(r) due
to the appearance of polarization charges at the NC boundary.
Here

Vsp(r) = e2(εs − εd)

2εs R

∞∑

l=0

l + 1

lεs + (l + 1)εd

r 2l

R2l
(1)

is the self-polarization potential energy originating from the
interaction between the electron and its own image. εd is
the permittivity of the wide-band dielectric matrix surrounding
the NC, and R stands for the NC radius. The term Vie(r,h)
describes the direct electron–ion interaction, as well as the
interaction of the electron with the ion image:

Vie(r,h) = − e2

εs|r − h| − e2(εs − εd)

εs R

×
∞∑

l=0

hlr l

R2l

l + 1

lεs + (l + 1)εd
Pl(cos θ), (2)

where h is the donor position vector, Pl(cos θ) is the Legendre
polynomial, and θ is the angle between r and h.

The short-range part W can be determined using the
microscopic dielectric function obtained by Walter and
Cohen [14] with the empirical pseudo-potential method, as
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follows:

W (r,h) = − e2

|r − h|
[

A exp (−α|r − h|)+
(

1 − A − 1

εs

)

× exp(−β|r − h|)
]
. (3)

Here, α and β equal 0.82 and 5.0 of the reciprocal
Bohr radius, respectively, and A = 1.142. Pantelides
and Sah [15] have obtained a similar expression earlier.
They also found that the existence of the local short-range
field is an inherent property of an isocoric impurity, such
as phosphorus. All other impurities produce nonlocal and
stronger perturbations, the description of which within the kp-
method is questionable. The PL enhancement discussed in
the present paper is exclusively due to the short-range field of
phosphorus, as will be shown below.

Determination of the electronic structure of a P-doped
silicon crystallite also exhibits a key role of the short-range
field in the electron state formation [16–20]. In particular, in
the conduction band, the spinless ground state (being sixfold
degenerate in an undoped dot) splits due to the short-range
field, in a way similar to that of bulk Si, into a singlet with the
lowest energy, and doublet and triplet groups of states. Such a
splitting occurs independently of the donor position in the dot.
The wavefunctions ψI of the two (if spin is taken into account)
ground states, being initial (I) ones under the basic radiative
transition, have the form [19]:

|ψI〉 ≡ |ψσ 〉 = |σ 〉
∑

X1,b

λb(X1)|X1〉|b〉. (4)

Here, |σ 〉 = |↑〉, |↓〉, λb(X1) are the expansion
coefficients, |X1〉 are the Bloch functions of the representation
X1 of the X-point built in accordance with the symmetry of
the irreducible representations A1, E, and T2 of the tetrahedral
group Td. The Bloch function |A1〉 ≡ uA(r) describes the
singlet state in the bulk silicon, while |E(1,2)〉 ≡ u(1,2)E (r), and
|T(1,2,3)2 〉 ≡ u(1,2,3)T (r) are the doublet, and triplet functions,
respectively. Function |A1〉 has a nonzero value at the donor
site in contrast to the functions |E(1,2)〉, and |T(1,2,3)2 〉, which
equal zero [13]. Index b stands for the s-, and p-type envelope
functions of the isotropic zero-order k–p Hamiltonian (see [19]
for details). These functions are written as

|s〉 ≡ φ(r) =
√

π

2R3
j0(πr/R),

|pa〉 ≡ φa(r) =
√

3

2πR3

j1(μr/R)

j0(μ)

xa

r
,

(5)

where a = 1, 2, 3 (or x , y, z), j0,1(x) are spherical Bessel
functions, and μ is the first root of j1(x).

In the case of a central located donor inside the NC,
coefficient λs(A1) is close to 1, while all the other coefficients
are negligibly small [19]. As a result, wavefunctions of the two
initial states, differing by spin projection, can be represented
approximately by: |ψσ 〉 ≈ |A1〉|s〉|σ 〉. If the donor position
is asymmetric, all the coefficients λb(X1) should be taken into
account in the expansion (4). In this case, the portions of all
Bloch and envelope functions are determined numerically [19].

In the valence band no splitting, other than the spin–orbit
one, arises until the donor occupies the dot centre. In this
case, the short-range field results only in a shift of the energy
levels. The upper energy level in the valence band is fourfold
degenerate. Wavefunctions ψF of this quadruplet (final (F)
electron states or, equally, initial hole states) are the products
of the Luttinger functions |M〉 of the total angular momentum
3/2 with M = ±1/2,±3/2, and the s-type envelope function:
|ψF〉 ≡ |ψM〉 = |M〉|s〉 [21]. If the donor position is
asymmetric, M is no longer a good quantum number. In
this case, the upper quadruplet splits into two doublets whose
wavefunctions have rather cumbrous expressions [22]. We
do not cite them here. Nevertheless, it is possible to write
them in some general form similar to that for the initial state
(equation (4)):

|ψF〉 =
∑

�25′ ,b,σ
λbσ (�25′)|�25′ 〉|b〉|σ 〉. (6)

Here, |�25′ 〉 denotes one of three basic Bloch functions
|Y Z〉, |X Z〉, or |XY 〉 of the spinless irreducible representation
�25′ of the �-point. All these Bloch functions equal zero at the
donor site. Coefficients λbσ (�25′) have been found earlier [21].

Let us compute the transition rates τ−1
R (I,F) between all

possible I and F states. In order to compute the rates we employ
the Fermi golden rule. After some algebra, it can be written in
the following form:

τ−1
R (I,F) = 4e2κ(εs; εd)εg(R)

3m2
0h̄2c3

|pIF|2. (7)

Here, e and m0 are the free-electron charge and mass,
respectively, εg(R) is the NC’s gap depending on the dot
radius, h̄ is the Plank constant, c stands for the speed
of light in a vacuum, and pIF is the optical momentum
matrix element. The function κ(εs; εd) = 9ε5/2

d /(2εd + εs)
2

replaces the standard factor
√
εs due to the replacement

of the homogeneous media with bulk permittivity εs by a
spherical silicon nanocrystal surrounded by a dielectric wide-
band matrix with a dielectric constant εd [22].

In the case of indirect transition, pIF is usually close to
zero. As a result, the no-phonon radiative decay rate turns out
to be small. However, the presence of the phosphorus ion,
creating the short-range field in the NC, drastically changes
the situation. The central-cell potential, being of the short-
range type in a real space, turns into the long-range one in
a momentum space. Correspondingly, it can mix the Bloch
states of distant points in the Brillouin zone, such as, e.g.,
nonequivalent X-points in the conduction band of silicon [13]
(X–X mixing called usually as a valley–orbit interaction), or
X- and �-points (�–X mixing). The latter crucially influences
the optical matrix element and the decay rate. The �–X
mixing involves Bloch states |�15〉 and |�2′ 〉 in the initial
electron states |ψI〉, and the Bloch states |X4〉 in |ψF〉, as shown
schematically in figure 3. The presence of the Bloch states
|�15〉 and |�2′ 〉, and |X4〉 in the modified initial electron, and
hole states, respectively, transforms the electron–hole indirect
transition into partly direct. This significantly accelerates the
interband radiative transitions.
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Figure 3. Schematic representation of the silicon band structure.
Dashed arrows indicate mixing the initial/final electron state (band
X1/�25′) with the intermediate states from the bands �15, �2′/X4.

Thus, the short-range donor field mixes the initial |ψI〉, or
the final |ψF〉, electron states with the so-called intermediate
states |ψ(I)i 〉, or |ψ(F)i 〉, having Bloch functions |�15〉 and |�2′ 〉,
or |X4〉, respectively. We neglect all the other X- and �-bands
with too low or too high energies. Taking into account the
short-range Coulomb field as a first-order perturbation, one can
modify the wavefunctions of the initial and final electron states
as follows:

|�I,F〉 = |ψI,F〉 +
∑

i

CI,F(i)|ψ(I,F)i 〉. (8)

Here, CI,F(i) = 〈ψ(I,F)i |W |ψI,F〉/(εI,F − εi) are the
amplitude coefficients of the intermediate states arising due
to the donor field, with εI,F and εi being the energies
of the initial/final and intermediate states, respectively.
For convenience, one can represent wavefunctions of the
intermediate states |ψ(I,F)i 〉 in a form similar to |ψI〉 or |ψF〉:

|ψ(I,F)i 〉 =
∑

�,b,σ

λbσ (�)|�〉|b〉|σ 〉, (9)

where |�〉 are the Bloch functions of representations �15 and
�2′ for |ψ(I)i 〉, and X4 for |ψ(F)i 〉. Expansion coefficients
λbσ (�) are determined as solutions of eigenvector and
eigenvalue problem for the k–p Hamiltonian operators in �15,
�2′ , and X4 bands.

It is important to emphasize that the Bloch functions |�15〉
and |X4〉 equal zero at the donor site while |�2′ 〉 has some
finite value (see, e.g., subsection IID2 of the book by Yu and
Cardona [23]). Since the short-range Coulomb interaction
differs from zero in the vicinity nearest to the donor nucleus,
the coefficients CI(�15) and CF(X4) have to be much less than
CI(�2′). Therefore, we neglect CI(�15) and CF(X4) in the
subsequent calculations. However, CI(�2′) should be kept in
equation (8). As a result, the wavefunction of the final electron
state remains invariable: |�F〉 = |ψF〉; while the wavefunction
of the initial state is modified by the short-range donor field:
|�I〉 = |ψI〉 + CI(�2′)|ψ�2′ 〉, where |ψ�2′ 〉 is the wavefunction
in the band �2′ .

Since �2′ is a simple band, it is possible to describe
the electron states in this band with a standard effective
mass approximation as a product of the corresponding Bloch
function �2′ and some envelope function. In particular, if
the donor distribution in the NC has spherical symmetry, the
ground state in the �2′-band has an envelope function of s-type
and the total wavefunction |ψ�2′ 〉 = |�2′ 〉|s〉. All other states
in the �2′-band have p-, d-, 2s-type, etc envelope functions,
and contribute slightly to the �–X mixing. In the case of an
asymmetric donor distribution, the envelope function of the
ground state in the �2′-band will be predominantly a result of
s-p hybridization. Then the expression for the wavefunction
of the intermediate state (equation (9)) is transformed into
|ψ�2′ 〉 = |�2′ 〉|σ 〉∑

b λb(�2′)|b〉, where the index b runs over
s, px , py , and pz .

Consequently, we have to determine the only coefficient
CI(�2′) = 〈ψ�2′ |W |ψI〉/(ε(A1)− ε(�2′)) for the ground state
in the �2′ -band. Here, ε(A1) is the energy of the initial state—
the ground state in the X1-band. To calculate the matrix
element 〈ψ�2′ |W |ψI〉 we employ equation (3) for W , and the
free-electron model with Bloch functions represented by the
plane waves [23]. Energies ε(A1) and ε(�2′), as well as
expansion coefficients λb(�2′), can be found analytically in the
case of the central located donor (see, e.g., [19] for the initial
state). Otherwise, the energies and expansion coefficients are
determined numerically.

It should be noted that the total decay rate τ−1
R (I,F)

consists of two parts. The first part is the rate τ−1
D (I,F) of

the donor-induced transitions, while the second part represents
the rate τ−1

ph (I,F) of the phonon-assisted transitions. The latter
was previously computed and found to be decreasing with
doping [4]. The donor-induced contribution was not calculated
earlier. We have calculated τ−1

D (I,F) as well as the rate
τ−1

D being average over all possible I → F transitions for the
different degenerate initial and final states.

According to the Fermi golden rule, the rate of the no-
phonon radiative transitions induced by the short-range donor
field is defined by the squared magnitude of |pIF| ≡ pIF =
pcv|CI(�2′)|. Here, pcv is the so-called momentum matrix
element usually arising in the Fermi golden rule for direct
electron transitions. In the frames of the free-electron model,
pcv equals 2π h̄/a0, where a0 stands for the silicon lattice
constant. For indirect transitions in silicon crystallites, the
optical matrix element pIF acquires an additional small factor
CI(�2′) close to 0.1 for 2–3 nm crystallites, and decreasing as
the NC size increases.

Figure 4 presents the dependence of the decay rates on
the dot radius for the case where the phosphorus ion occupies
the dot centre (h = 0). The initial and final states, and
the rates, can be symbolically denoted by σ and M , and
τ−1

R (σ,M), respectively. In this case it is possible to show
that six of the eight σ → M electron transitions are allowed,
and their rates obey the following equalities: τ−1

D (↑, 3/2) =
τ−1

D (↓,−3/2) ≡ 2τ−1
D ; τ−1

D (↑, 1/2) = τ−1
D (↓,−1/2) ≡

4τ−1
D /3; τ−1

D (↑,−1/2) = τ−1
D (↓, 1/2) ≡ 2τ−1

D /3. Two
residual transitions |↑〉 → |−3/2〉 and |↓〉 → |3/2〉 are spin-
forbidden. The rates of all the six allowed transitions, as well
as the average rate, are depicted in the figure. One can see
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Figure 4. Rates of the donor-induced allowed radiative transitions
versus the dot size at h = 0 (from bottom to top):
τ−1

D (↑,−1/2) = τ−1
D (↓, 1/2); τ−1

D (↑, 1/2) = τ−1
D (↓,−1/2);

τ−1
D (↑, 3/2) = τ−1

D (↓,−3/2)—dots; their average rate τ−1
D —solid

line. Average rate τ−1
0 of the phonon-assisted transition in undoped

crystallite (according to [4])—dashed line. Inset: decay rate τ−1
D as a

function of dimensionless donor displacement from the dot centre
h/R—solid line. The horizontal dashed line represents τ−1

0 .

that in a wide range of dot sizes, the donor-induced radiative
transitions turn out to be faster than the phonon-assisted ones,
whose average rate τ−1

0 , for the case of undoped NC [4], is
shown with a dashed line. This trend is more pronounced for
smaller sizes; e.g., at R = 1 nm, τ−1

D exceeds the average rate
τ−1

0 by more than an order of magnitude.
This is a direct consequence of the quantum confinement,

which becomes stronger for smaller NCs. The matrix element
〈ψ�2′ |W |ψσ 〉, defining the amplitude of the direct transition
�2′ → �25′ , is proportional to the squared value of the s-type
envelope function (equation (5)) at r = h. The latter is due to
the short-range character of W . Because we discuss the central
located donor, then h = 0, and 〈ψ�2′ |W |ψσ 〉 ∼ R−3 according
to equation (5) and explicit expressions for |ψ�2′ 〉 and |ψσ 〉.
Correspondingly, τ−1

D (σ,M) is proportional to R−6, and rises
sharply as the NC size decreases. At the same time, τ−1

0 rises
as R−3 [4] with decreasing R, and turns out to be less than τ−1

D
at small sizes.

As has already been mentioned above, the no-phonon
indirect transitions in undoped NC are 1–3 orders of magnitude
slower than the phonon-assisted ones. This is why we compare
here τ−1

D with the phonon-assisted decay rate but not with the
rate of the no-phonon indirect transitions.

We should note, however, that such a relationship between
τ−1

D and τ−1
0 turns into the opposite one if the donor shifts

towards the NC surface, see inset of figure 4. Beyond
half the dot radius, the average decay rate τ−1

D drops with
increasing h. The origin of this sharp decrease lies in a
strong weakening the central-cell interaction near the dot
boundary, and the wavefunction reconstruction leading to
a certain spatial separation of the electron densities in the
conduction and valence bands. In particular, electron density in
the conduction band tends to accumulate near the donor, while
the valence band density tends to occupy donor-free areas.

Thus, the donor-induced radiative recombination substantially
decelerates as the system asymmetry rises.

Nevertheless, it is seen that some finite-size area exists
around the NC’s centre, where doping is efficient from the
point of view of considerable acceleration of the radiative
interband recombination in Si NCs, leading to the enhancement
of the PL intensity. We would like to emphasize once more
that such an enhancement is possible due to improvement of
the radiative channel efficiency, which is mainly caused by the
short-range Coulomb field of the phosphorus ion.
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